CSCI 7000-019 Fall 2023: Problem Set 6 Counting with Complexity Due: Monday Nov 6, 2023

Joshua A. Grochow

October 26, 2023

A decision problem $A:\{0,1\}^{*} \rightarrow\{0,1\}$ is (polynomially) sparse if there is some polynomial p such that, for all n,

$$
\left|\left\{x \in\{0,1\}^{\leq n}: A(x)=1\right\}\right| \leq p(n) .
$$

1. (a) If A, B, C are decision problems, and $A \leq_{m}^{p} B$ and $B \leq_{m}^{p} C$, show that $A \leq_{m}^{p} C$.
(b) A decision problem A is NP-hard if every $B \in$ NP reduces to A ($B \leq_{m}^{p} A$). A decision problem is NP-complete if it is NP-hard and also in NP. Boolean Satisfiability is NP-complete, as is Graph 3 -Colorability. Show that if A is NP-hard and $\mathrm{P} \neq \mathrm{NP}$, then A is not sparse.
(c) If C is NP-complete, show that you can use Mahaney's Theorem with C in place of SAT. Hint: Do not re-prove Mahaney's Theorem, just combine the right ingredients to show that it applies directly as a black box.

Consider the following decision problems:
3-SAT
Input: A Boolean 3-cnf φ, that is, $\varphi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$, where each C_{i} is an OR of three literals (a literal can be either a variable or a negated variable)
Decide: Is φ satisfiable?
3COL
Input: A simple undirected graph G.

Decide: Is G properly 3-colorable? That is, is there an assignment of colors $c: V(G) \rightarrow\{r, g, b\}$ such that for all $(u, v) \in E(G)$, $c(u) \neq c(v)$?

HamiltonianCycle
Input: A directed graph G
Decide: Does G contains a Hamiltonian cycle? That is, is there a directed cycle in G such that every vertex of G occurs exactly once in the cycle?
2. You may take for granted that 3SAT is NP-complete.
(a) Show that 3COL is NP-complete.
(b) Show that, if $\mathrm{P} \neq \mathrm{NP}$, there are super-polynomially many graphs on n vertices that are properly 3 -colorable, and super-polynomially many that are not properly 3-colorable, using Mahaney's and Fortune's Theorems.
(c) Same as (b), but by directly constructing that many instances of 3 -colorable and non-3-colorable graphs.
3. You may take for granted that 3SAT is NP-complete.
(a) Show that Directed Hamiltonian Path is NP-complete.
(b) Show that, if $P \neq N P$, there are super-polynomially many directed graphs on n vertices that have Hamiltonian cycles, and super-polynomially many that don't, using Mahaney's and Fortune's Theorems.
(c) Same as (b), but by directly constructing that many graphs.

